
蓄電池內(nèi)阻試驗裝置測試原理第1章 簡介
1. 說明
本手冊為WBXC-1000蓄電池內(nèi)阻測試儀的使用指南,請在操作使用測試儀前仔細閱讀本手冊。
蓄電池內(nèi)阻試驗裝置測試原理2. 主機部件
2. 1 USB接口:用來通過U盤上傳測試數(shù)據(jù)和下載參數(shù);
2. 2 測試接口:連接測試夾具;
2. 3 充電接口:連接充電器;
2. 4 LCD:320*240彩色TFT液晶屏;
2. 5 鍵盤:共7個按鍵。定義如表一。
表一 鍵盤功能一覽表
蓄電池內(nèi)阻試驗裝置測試原理3. 主要功能特點
可對蓄電池電壓、內(nèi)阻、容量進行測試;
可以作為電壓表使用,測試電池電壓;
可對不同電壓等級的蓄電池進行自動切換;
可對蓄電池進行容量測算;
測試數(shù)據(jù)同步存儲;
對判別結(jié)果進行聲音提示;
電池充電狀態(tài)指示;
本機電池電壓實時顯示;
無操作自動待機;
測試數(shù)據(jù)記錄存儲;
通過u盤和分析軟件系統(tǒng)進行數(shù)據(jù)交換。
蓄電池內(nèi)阻試驗裝置測試原理4. 技術(shù)指標
測試量
|
量程
|
精度
|
分辨率
|
電壓
|
0~16V
|
±0.5%
|
1mv
|
內(nèi)阻(2V)
|
0~10mΩ
|
≤5%
|
1μΩ
|
內(nèi)阻(6V/12V)
|
0~100mΩ
|
≤5%
|
1μΩ
|
溫度
|
-20℃~80℃
|
±0.5%±1℃
|
1℃
|
供電電源
|
12V 3000mAh可充鋰電池
|
可存數(shù)據(jù)
|
2500節(jié)
|
測試時間
|
連續(xù)工作不小于6小時
|
存儲容量
|
512Kbytes
|
待機時間
|
>32小時(有自動待機功能)
|
尺寸
|
238*134*44mm
|
顯示器
|
320*240彩色TFT液晶屏
|
相對濕度
|
10%~90%
|
工作溫度
|
-10℃~45℃
|
采樣率
|
1.25組(內(nèi)和電壓測量)/秒。
|
蓄電池內(nèi)阻試驗裝置測試原理第2章 內(nèi)阻測試說明
電池內(nèi)部阻抗,也稱為內(nèi)阻,是一項影響電池性能的關(guān)鍵指標。測試電池內(nèi)阻以判斷電池供電能力已經(jīng)是業(yè)內(nèi)的共識。影響電池內(nèi)阻的因素有:電池尺寸、工作時間、結(jié)構(gòu)、狀況、溫度和充電狀態(tài)。
對于一個充滿電的電池,當電池放電時,其內(nèi)阻逐步緩慢增大;當電池放電達到一定程度后,內(nèi)阻的變化量才急速增大;當電池放完電后,其電阻比完全充電狀態(tài)時大2~5倍。
電池溫度也影響內(nèi)阻的測量,但只在冰點以下才比較明顯。在32℉以下,溫度對內(nèi)阻的影響很大,在-20℉時的內(nèi)阻是原來的兩倍。這就是為何在冬季電池的能量要小很多。
電池的使用時間也會影響其內(nèi)阻。電池使用時間越長,隨著鹽化增加內(nèi)阻越大。內(nèi)阻增加的多少與電池的使用和維護方法有關(guān)。電池的整體狀況(例如機械裝置失效)也會影響電池的內(nèi)阻。某些失效模式會使電池內(nèi)阻增加。
由于不同廠家在生產(chǎn)電池時,工藝、配方的不同,造成同樣容量的電池內(nèi)阻有所差異,對電池好壞的判斷不應完全拘泥于電池內(nèi)阻的值,還應參考電池內(nèi)阻的變化趨勢。當電池內(nèi)阻超過初始內(nèi)阻的1.25倍時,電池就已經(jīng)不能通過測試,當電池內(nèi)阻變化到初始內(nèi)阻的2倍后,電池結(jié)構(gòu)容量就不足80%。
本內(nèi)阻儀的采用瞬間放電法對電池進行內(nèi)阻測量。對蓄電池的實際工作情況進行分析研究可以發(fā)現(xiàn),蓄電池的端口對外電路呈現(xiàn)阻抗特性。在實際的使用中,蓄電池的電極,連接線等構(gòu)成的電感,由于使用頻率低,引線短,電感很微弱,一般在分析和研究中不予考慮。
一般我們都將蓄電池的電阻分為金屬電阻,也即是歐姆電阻;電化學電阻,包括電化學反應電阻和粒子濃差極化電阻。關(guān)于容抗部分,法拉第電容因為其恒壓特性,可以將其等效為一個電壓源。另外,將其他容抗都等效變化為多個電容并聯(lián)形式,則電池的等效模型可以簡化如圖1所示。
Rm為金屬電阻,這部分的電阻只是隨著金屬的腐蝕、蠕變、硫化等因素而緩慢地變化著。電化學電阻Re則是隨著容量的狀態(tài)而時刻發(fā)生著變化的,但是這部分的變化又為并聯(lián)著的電容的容抗變化所掩蓋著。在交流情況下,由于電容 C 比較大,大部分電流流經(jīng)電容,而 Re上分流較少,此時檢測到的實際上是由Rm和C串聯(lián)的阻抗,而 Re被忽略了。為了避開C的分流,直接由電池產(chǎn)生一個瞬時的大放電電流,然后測出電池極柱上電壓的瞬間變化,如圖2所示,通過負載接通時的瞬間電壓降和斷開負載時的瞬間電壓恢復可以推導出相應的內(nèi)阻。
在瞬間直流情況下,蓄電池的等效模型可以認為是一個電壓源和內(nèi)阻串聯(lián) (戴維南等效模型 )所構(gòu)成,如圖3所示。
ΔU=RinternalI從而有Rinternal=ΔU/I
從理論上說,在這里ΔU 有兩個,一個是給試驗電路加上負載的瞬間,電池電壓跌落值,另外一個就是斷開負載的瞬間,電池電壓的恢復值。但是,由于實驗過程中,在合閘瞬間,電壓和電流都容易引入很大的沖擊,導致較大的誤差,所以這里統(tǒng)一采用電壓的恢復值,而此時電流也基本上達到了穩(wěn)態(tài)。
本內(nèi)阻儀可以測量電壓、內(nèi)阻,估算出電池剩余容量。
測試原理
通過大量的試驗得出:蓄電池的內(nèi)阻值隨蓄電池容量的降低而升高,也就是說,當蓄電池不斷的老化,容量在不斷的降低時,蓄電池的內(nèi)阻會不斷加大。通過這個試驗結(jié)果,可以得出,通過對比整組蓄電池的內(nèi)阻值或跟蹤單體電池的內(nèi)阻變化程度,可以找出整組中落后的電池,通過跟蹤單體電池的內(nèi)阻變化程度,可以了解蓄電池的老化程度,達到維護蓄電池的目的。
對于VRLA蓄電池來說,如果內(nèi)部電阻比基準值(平均值)增加20%以上,蓄電池性能則會下降到一個級低的水平。這個值也是IEEE STD建議立即采取糾正措施(放電試驗或更換)的標準。IBEX1000則根據(jù)這個建議基準將報警值設(shè)定為20%。
相應的,VRLA蓄電池容量下降到80%以下時,蓄電池的老化程度就像在圖形中的△T一樣,該時間是無法預測的,同時容量衰減的速度會越來越塊,而內(nèi)阻值的增加也會越來越快。因此我們建議,及時更換蓄電池,以提高貴公司蓄電池系統(tǒng)的可靠性。
至今為止,實際應用的判別蓄電池健康狀態(tài)的方法只用IEEE推薦的標準,因此我們建議,當蓄電池的內(nèi)阻值增加20%以上,應考慮對此單元電池采取糾正或更換措施。